<img height="1" width="1" style="display:none;" alt="" src="https://dc.ads.linkedin.com/collect/?pid=544292&amp;fmt=gif">
blog2.jpg

Innovative Thinking

Premier Automation

Recent Posts

Modern Safety’s Continuing Evolution

For decades machine safety systems in industrial complexes have been associated with individual components such as safety interlocks, electromechanical relays, switches, fencing, enclosures, and so on. But with each passing year, this approach seems to be expiring and lagging with the requirements of today.

Machine safety components are tools that can be used in a certain manner to ensure the safety of a machine. The end-goal of machine safety component usage has shifted from installation of safety components to the successful accomplishment of a goal-set and a strategy. This effectively means that a shift needs to occur from the traditional on/off, go/no/no-go paradigm towards a more functional approach that ensures the workability of all safety-related components in a coherent manner. This system-based approach is now the consensus of several safety experts due to the rapidly changing market demands and evolving technologies.

Industrial Robotics Market Growth

As technology becomes more prevalent, machines are now being used to build other machines. Most of the robots produced are shipped to various factories where they play a key role in the manufacturing of cars, laptops, and other equipment. It has been reported by Loup Ventures that as more people are swayed towards gadgets, the market for industrial robots is bound to grow over 175 percent over the next decade.

But the dynamic is going to change as well. The driver of this growth won’t consist primarily of industrial arms joining car parts as they have been for decades. Instead, a new generation of robots is taking over that is smarter, more compact, and much more collaborative than the traditional industrial robot. These collaborative robots will account for a large percentage of robots sold in future decades throughout industries. To compare, collaborative robots today only account for 3 percent of industrial robots.

Benefits of Automated Deburring

Previous deburring methods required a lot of time and effort to occur. An operator would unload cut parts from a plasma cutting machine, reload a sheet, and then manually grind the burrs and slagging off any edges. Once the operator finished grinding, the ground parts are retrieved by a material handler and carried away. These steps are repeated over and over, with the next batch of cut parts being unloaded, and going through the hand-grinding process. While the operation may sound coordinated to someone who runs a low-volume establishment, the truth is this kind of work is difficult and prone to issues on a wide scale.

The Rise of the Smart Factory

The Factory of the Future, better known as Smart Factory, is a paradise of efficiency where words like defect, downtime, and delays exist only within historical facility logs. The facility is powered by a web of interconnected devices operating together in harmony for the satisfaction of clients and customers within time frames, and at a manageable cost.

Such a factory represents the epitome of technological development, illustrating a perfect mix between high-tech tools and skilled workers that complement each other. And while this may still be a fantastic dream, its much closer than one might think.

Top Technological Trends in Material Handling

Many of the technologies that are changing the fabric of the society are also entering other sectors such as material handling. Warehouses and distribution centers are now faced with concepts such as Internet of Things, Artificial Intelligence, and Big Data. These concepts can greatly improve the efficiency of the establishment, but they can possess a steep learning curve.

While still new to the industrial world, these concepts are already finding use within industries that will serve as proving grounds for new material handling technologies. The future of warehouse management is dependent on a handful of key technologies that include Big Data and the Internet of Things.

Importance of Overall Equipment Efficiency (OEE)

There are several important metrics manufacturing managers use to either gauge or improve their facilities’ efficiency or productivity. One of the most common is called Overall Equipment Efficiency, or OEE. Having an in-depth understanding of OEE and its importance can help managers achieve their efficiency targets in a timely fashion, without requiring frequent interventions.

OEE is a way to measure the efficiency of a process or machine in a facility.  Some use OEE as a key performance indicator, or KPI, to rate their facility against other facilities or to show how well their facility performs. However, OEE’s main purpose is to show how to improve a process’s efficiency in a facility.

HMI/Historian Integration

HMIs, or human-machine interfaces, allow easy control and interaction between operator and machine. However, the data they collect can be underutilized. This is why integrating historians with HMIs is recognized as an effective data collection method.

Historians are software for data collection which can then be stored in spreadsheets, files, and other database products. This allows the information to be accessible for reporting on different trends and to refer back to later on. HMIs allow the data to be seen in real time before the historian software records it, as well as historical data replay if the HMI/SCADA is set up properly.

Integrated Drive Systems Ensure Application Reliability

Because of their many benefits, Variable Frequency Drives, or VFDs, are swiftly surfacing in large industrial systems with complex motor systems requirements. The benefits of VFDs include higher system efficiency, operation flexibility, and improved reliability. The key to success behind this adoption of VFDs is developing clear-cut, well-defined requirements for running drives and motors. Having requirements in such a form allows components to be designed in an optimum manner, resulting in highest reliability and lowest cost of ownership.

What You Should Know About Cascade Control

Multiple sensors are often used for measuring parameters in controlled processes. In such cases, cascade control systems offer a much more viable and better choice than traditional single-measurement controllers. For instance, a temperature sensor that measures and alters the valve actuator in a steam-fed water heater may seem like a complete solution, but it would start to bottle-neck once multiple parameters start chipping in, such as mechanical friction.

Maximize ROI with an Integrated Approach to Control Systems

Industrial organizations are aligning themselves with Industry 4.0 and IoT not because it’s a general trend, but because such automation technologies can greatly influence one of the most important factors in a business: profitability.

The best way to ensure a high return on investment is adherence to open standards, allowing frequent upgrades at manageable costs, effectively future-proofing an industry’s infrastructure. For decades, PLCs have been the backbone of all automation technologies. Advancements in embedded cybersecurity, compliance to communication standards, and greater integration capabilities are all factors that can notch-up the productivity and reliability of PLC applications.