<img height="1" width="1" style="display:none;" alt="" src="https://dc.ads.linkedin.com/collect/?pid=544292&amp;fmt=gif">
blog2.jpg

Innovative Thinking

Automation and Environment

 It can be stated without a doubt that economic efficiency serves as the prime motivator for adopting automation technologies. Directly, or indirectly, operational efficiency also leads to a reduction in waste products and allows companies to minimize their energy needs. The US Environmental Protection Agency has repeatedly recognized these benefits and encouraged shift-over to automated electronic reporting and advanced monitoring technologies.

Common Causes of Electrical Motor Failure

Motors form the backbone of almost all major industrial operations, irrespective of the industry chosen. Motor failure can lead to unscheduled downtime and increases in costs from replacement and/or maintenance.

Benefits of Robotic Grinding and Finishing

 Robotic material removal processes are capable of instilling considerable economical and operational benefits within plant floors. Compared to manual processes, robotic grinding is more robust, streamlined and manageable.

Things to Consider when doing Motor Maintenance

Maintenance of electrical motors and related equipment is one of the most mission-critical tasks for an industrial plant, and for good reason. Motors are the primary source of productivity and form the backbone of all operations within a plant, driving virtually every major equipment from pumps to conveyors. If an interruption arises then it can greatly affect the productivity and with that the economic efficiency of the plant.

Cybersecurity and Drives: What Dangers Exist and How to Prepare for them?

The infamous Stuxnet worm made headlines in 2009 when it penetrated Iranian Nuclear Facilities, resulting in the destruction of their centrifuges. The debate regarding the origin of the worm spanned political boundaries, but nonetheless it uncovered the next generation of zero-day attacks that could disrupt industrial processes relying on inter-connected components.

The Next Generation of HMI and SCADA

The age of Industrial IoT is upon us and HMI/SCADA systems face new challenges pertaining to their integration with modern technological marvels such as Big Data, Cloud, IoT, predictive analytics and 4G/LTE, etc.

The HMI software market has been hit hard by the advent of IoT, shaping its very development and resultant features. For some, SCADA systems are bound to become obsolete as edge computing takes over, with the intelligence become distributed rather than recouping in a central location. These thoughts are backed by the rise in AI engines, cloud computing capabilities and digital twins, disrupting conventional industrial schemes.

First, one should know that there is a very clear (yet forgotten) difference between HMI and SCADA, with the former being a closer counterpart of an individual operator and latter acting as a central control for an entire plant. Even though SCADA provides a comprehensive solution for monitoring, control, automation and reporting, several vendors sell HMIs, historian software, reporting tools and alarm software along with higher-level applications, e.g. MESs, analytics, etc. This means there’s a redundancy in the market regarding the functions and features of SCADA systems.

With new technologies such as IoT coming into play, HMI/SCADA software is becoming more mission-critical. The room for errors is decreasing as even a minute mistake can have a big impact over the plant floor. IoT devices, as one may call them, give users access to lots of useful data along with a higher refresh rate. This seems beneficial from a business standpoint but is sometimes hard to implement from the technical point of view. The next generation of HMI/SCADA hardware and software aim to address such technical challenges.

Connectivity

As digitization continues, availability of energy-efficient Ethernet and Wi-Fi networks becomes a reality. This allows equipment to be distributed further across the factory floor, and even be made “mobile” for added flexibility. As stated earlier, edge-located IoT devices are becoming the norm, spurring issues for traditional connectivity schemes. In a typical factory arrangement, data follows a path similar to this:

  1. Sensor
  2. PLC
  3. OPC Server
  4. PC based HMI/SCADA
  5. Gateway
  6. Reporting/charting system

On the other hand, HMI/SCADA systems of the future will flatten out such a tall hierarchy, leaving only three pieces behind:

  1. Sensor
  2. Groov EPIC
  3. Cloud or on-premises applications
Hardware

The hierarchy stated above can take advantage of modern open-source hardware and software platforms that don’t tie factory managers to a specific standard. Specialized elements can be superseded with standard building blocks.

Moreover, the development of edge technologies mean that newer platforms are embedded with sufficient connectivity and processing power, eliminating the need for layers of PLC servers and PCs. When we say, “edge component”, we mean an entity that borrows features from a PLC, PC and HMI, functioning as an industrial controller.

Each edge component possesses the ability to act as a bridge for other intelligent devices all the way up to the cloud. From thereon, they can form the core of the new architecture on top of which HMI and SCADA is built.

Software

Hardware alone isn’t enough to bridge the gap between IoT devices and HMI/SCADA systems. Instead, developers would have to rely on numerous open-source and built-in software technologies, namely:

  • Linux OS
  • Native OIT/HMI options
  • OPC UA drivers
  • Improved licensing
  • MQTT/Sparkplug

Windows continues to be a popular choice for HMI and SCADA manufacturers, but in recent years it has faced stiff competition from the open-source alternative Linux that promises greater security and stability. Much of the development taking place on IoT and smart devices is based on Linux, Ubuntu being a popular distro.

OPC UA drivers are built into many components shipped out today, facilitating native communications between edge devices and popular PLCs. This allows the power of IoT devices to be reaped out to the fullest level. Finally, security is being made firmer through technologies such as MQTT that allows secure inbound/outbound communications to take place. It can operate seamlessly over typical business IT systems, avoiding complex and stiff network configurations. MQTT is often used in conjunction with Sparkplug that effectively delivers industrial-type messages throughout the plant.

The future is exciting to say the least and is already here; technologies such as those mentioned above have already started shifting the traditional route of HMI/SCADA development, something that will only pick up pace with the passage of time.

 

Interested in learning more? Visit our website www.premierautomation.com, or talk to one of our specialists today.

Digging Into Motor/Drive Mismatch

 VFDs are incorporated into motor control to improve process efficiency and bring down maintenance episodes, but some plant managers experience the opposite. Why? Quite certainly, this is the result of a mismatch between motors and drives.

One may think of variable speed drives to be the culprit, but the fact is, they don’t make motors fail. It is incorrect planning and selection that is the root cause. Modern drive technology should not be sidelined due to fears of motor failures.

IIoT and Predictive Analytics

Industrial Internet of Things, Industry 4.0, Digital Factory, and so on, are buzz words that every marketing executive likes to use. But their extensive adoption today has made them into applicable technologies, allowing manufacturers to achieve the universal goal of higher productivity.

The Robot Revolution

Robots are no longer giant, mechanic beasts that are reserved for heavy-lifting and seemingly repetitive tasks. Now, they are changing, becoming more collaborative, mobile and intelligent. While they are changing due to technological breakthroughs, they are establishing a new place in the industry for themselves.

Premier Automation is Now a Lincoln Electric Authorized Robotic Integrator

Premier Automation has recently become a  Lincoln Electric Authorized Robotic Integrator. Lincoln Electric’s Authorized Robotic Integrator Program assists qualified integrators to better serve their customers, while having Lincoln Electric as a dedicated robotic welding partner. As a Lincoln Electric Robotic Integrator, Premier Automation can work with customers to deliver innovative, state-of-the-art welding solutions. Premier Automation engineers can offer expertise on all aspects of the equipment and processes to create success for our customers.